Tag Archives: programming

Things Being More Equal Than Others

It will soon be six months since I started my Code Year pledge with codecademy.com. I’m still going strong. I’ve even started beta testing a few courses ahead of time.  But this doesn’t mean that learning to program has been easy.

All my new learning is at the fresh cement stage. If I don’t take stock while I can still see the rocky road behind me, I become useless to the people still on it. So, I’ve decided this would be a good time to write about one of my biggest stumbling blocks coming out of the gate.

It was that damn = sign, and the subtle, but really important ways that this sign is different in imperative programming than it is in arithmetic and algebra.

For those of us who never continued with math beyond high school,  = has a pretty rigid meaning. It means “the same as”.  Things on each side of it evaluate as the same.  Sure, we understand that the value of a variable can change.  If  x = y + 1 in one algebra exercise,  we accept  x = 2y + 1 in the next one.  But essentially, what isn’t supposed to change is that both things on each side of that symbol have the same value.

In JavaScript, however,  = means something more like “attached to”.  Or “associated with” or “same type” or “contains all of these things” or is the same as “for a limited time only!”,  depending on the context in which it is being used.

Much of  coding is  building quickie archives of associations, archives that can just as quickly be dismantled. So programming needs an equal sign to have a much broader, less sticky meaning than it does in math.  In math the equal sign is like glue.  In programming it’s more like a post-it note.

For instance  x = 0 used in a programming algorithm usually does not really mean x is equal to 0.  It’s a way of saying that x is a number and  it will be starting at 0. So if we put x in a standard programming loop like (x = 0; x < 10; x++)  it means that x’s value is going to increase in numerical value by one, each of the 10  times we run that loop.

If we write x = ”  ” then  what we’re saying is that x is a string, i.e. some kind of phrase,  which usually means x will be used as a container for whatever words or sentences we want to plug into x.

If we want to make x stand for a particular series of actions,  we turn it into a function by writing  x = function (). That series of actions will be repeated every time we write x().

X can also be an array, a list of things, as in x = [1, train, $, 104, poodle].

In programming if you want to convey that something is actually equal  in the way normal people understand equal, you add an extra =, or just to be safe two extra equal signs, x === y.  This gives x what is called a “Boolean” value, i.e.  the variable either is or isn’t exactly this thing. For example:

 if (x === 3) {do this thing};

in this case  x has to be 3  for the action in  between the curly brackets to be executed.

if  (x !==3){do this thing};

means  do this thing only if x isn’t 3.

Write:  if (x=3) {do this thing},  and the computer will spaz out because your definition of  x is too vague, so it doesn’t know what to do.

****

If you learn to program with a bright sixth grader, as I did,  you may find that they grasp this floaty = concept much faster than you do.

Sixth graders don’t have to unlearn the = sign because they’ve just started learning algebra. Their brain has just freshly opened to the fact that an equal sign can be used in more interesting ways than previously known.

If your sixth grader is anything like my sixth grader, he or she  may very well kick your ass in the first twenty hours  of programming, as you stumble again and again  over whether that variable is the “same as “ or “sort of like” something, and hurt your brain further,  trying to figure out why it’s attached to that meaning in one place of the algorithm, but not in another place.

Even when I understood the difference theoretically, my brain kept reading the sign badly again and again. It was like that Stroop Test,  where someone shows you the word BLUE written in green ink.  When they ask you the color of the ink,  you keep saying blue because your brain prioritizes the language definition over the visual.  My brain was clamped on equal being equal, even when I knew it wasn’t.

“But wait!”, you and an unfortunate number of other educators might say.  “If we expose children too early to the more complex and nuanced programming concept of = won’t they get all confused when they learn algebra?  Don’t they need a period of time when the = sign has a more limited scope?”

You may even develop this idea further.  “What if after being exposed to all this = sign confusion, some children end up learning algebra [cue music to soundtrack from Psycho] at a slower rate. What horrible things will this do to their self esteem?  Maybe they’ll give up and refuse to learn algebra all together, in total frustration!”

This is the argument used by those  who think only really, demonstrably super smart kids should be exposed to programming in middle school.  Ideally in expensive summer coding camps reserved just for them.  And this is probably the argument that will solidify the growing gap between the technologically literate, and the now merely language literate, for much longer than it should exist.

It’s also the argument that will keep girls from mastering code as a matter of course, since they don’t tend to sign up for summer coding camp as frequently as boys, and by the time the girls are given the option of learning programming, they’ve developed a misconception about computer science as something only of interest to social isolates (var nerdyGeek = “social isolate”).

This is the same reasoning people use when they bring up studies that show  children raised in bilingual environments exhibit a significant language delay.  (Trilingual environments, they argue are even worse!)

I can only argue against this from anecdotal experience. But I will argue against it, passionately.

I’m a Montrealer, so my son, Ben, learned English at home, but went to daycare in our French speaking neighborhood.  To make matters “worse”,  I had joint custody with his father, who was born in Israel and spoke to him in Hebrew.

Indeed, this created a significant language delay, to the point where, when he was two, we had his hearing tested just to be sure.

But there was no hearing problem.  And not only was there no hearing problem, by the time Ben hit kindergarten he was reading fluently in both French and English, counting to a 1,000 and already starting to grasp a little multiplication.  Because by then, his brain was a language learning machine.

Ben’s not a genius (he’s been WISC tested. Apparently he’s at the high end of average).  He’s just a smart kid whose brain now codes information a little faster than normal kids because he spent his early years in an information rich environment where there was a lot more meaning to sort out.

If your child maintains a coding practice, even if it does cause a little confusion at first,  it’s a good guess he or she will not be falling behind on the math curve for long.  In fact, before you know it they will probably be three times as equal as the other kids.

Or if you want to contemplate a really scary scenario [Psycho refrain] they will probably become three times as equal as you.

Advertisements

Six Reasons a Non-Computer Nerd Might Want to Learn to Code – Technology – The Atlantic Wire

Six Reasons a Non-Computer Nerd Might Want to Learn to Code – Technology – The Atlantic Wire.

This is something of an analysis of the “everyone should learn to code” meme.  Except that it explores only the reasons why people might want to learn to code, which is not exactly the same as why they should learn.

Don’t get me wrong, I’m not trying to take the fun out of coding by turning into a moral imperative.  And the last thing any parent should do is  turn this into educational equivalent of vegetables.

But if we’re going to list the real advantages, and get into arguments with elite  programmers who keep telling us that newbies are wasting their time, we need something deeper than “it’s useful.”

If you’re a software engineer whose primary source of work is software manufacturing then yeah, there’s not much motivating you to preach to the masses to learn how to make software.  If, however, you’re a more politically minded programmer devoted to creating a more efficient world or let’s say more open source software that might massively reduce government and educational spending, then it’s more than just “useful” to have a citizens who know what you’re talking about.  It’s essential.

Because nothing is going to change until a critical mass of the population understands enough about computer science to pressure their respective government or administrations into making the significant changes that have all kinds of economic and social advantages.

So there.  A reason we should learn to program: because it might inspire others to do the same, and then maybe we’ll have a society that is better able to function as a more participatory democracy.

But don’t tell the kids that just yet.

The Parent Developer

I’ve actually been coding for a long time, without realizing it.

If we remove all the syntax of computer language and look at what the bare bones of coding is, it’s just using logic, reason and simple commands to create repeatable behaviours.

This is what parents do with children.

They start with small instructions,  baby steps and repeated routines,  appropriate to both the child’s abilities and the parent’s still developing skills as a programmer of babies.  Then as the child  starts to develop cognitive abilities, the parent sets up a system of conditionals: acceptable choices the child can make that will not include choices that will  bugger up their lives.

Figuring this out is a frustrating challenge, but it will probably work well enough while the child is still not much more than a new Object in the parent’s mind, something that in theory should inherit  all her workable (and perhaps not as workable as she’d like) methods.

But at a certain point the child hits  the age where he now has the abstraction abilities and the independence  to start programming his own life.  And this is where the real problems start, because the parent is  no longer the programmer with a child Object.  The parent is now dealing with a junior developer.  And if the  parent does not know how to establish her position as senior developer, there will be blood.

That’s why I think this is such a great time for Ben and I to learn how to code.  Because even if no one in the family ever becomes a professional programmer, we’re still regularly working together on solving problems with commands and the kind of simplification skills that  inevitably spill into our lives.  Ideally this will help us solve problems in ways that are more neutral and productive than what usually happens between adults and teenagers.

Obviously Ben will not stay a junior developer in this family for long.  This is the law of life and technology. Coders move on. But for now it’s still my responsibility to instill good thinking, writing, and commanding habits.

It’s all about those transferable skills.

Image

Humanizing Factorials

Annos-Mysterious-Multiplying-Jar

With The Tower of Hanoi, I had fun with the evil powers of recursion. But I’m not actually learning code to teach my son to become a dictator, even a benevolent one, bearing brownies.   While we’re learning recursion, it’s probably not such a bad idea to bring up the some of the consequences of creating formulas that make work and data collection efficient, but potentially dehumanizing.

A few years back a friend gave Ben a lovely book that shows both ends of the spectrum of rich creativity and mechanistic abstraction. Anno’s Mysterious Multiplying Jar was written and illustraed in 1999 by the Japanese  father and son team, Mitsumasa and Masaichiro Anno.  It tells a simple story of factorial development that starts with a jar,  large enough to contain an ocean.

In this ocean is an island and on this island are two countries:

In each country are three mountains.  On each mountain, four walled kingdoms.  In each kingdom, five villages.  In each village, six houses.  In each house, seven rooms, in each room eight cupboards.  In each cupboard, nine boxes.  In each box, ten jars like the first.

The question at the end of the story is how many jars are contained inside the jar?   The answer is ,of course,  3,628,800  a.k.a.  10 factorial or !10.

The first part of the story is filled with richly illustrated picture of villages, houses, rooms, cupboards, all with their unique, individual characteristics.  The second part retells the story with dots instead.  It goes as far as a two page spread representing !8, or 40,320 dots.   The Annos don’t venture past that, since they’re writing a children’s book, not a heavy tome full of dots.

But the point, so to say, is made.

rasberry pi….I want some!

Just found out about this really cool UK project called rasberry pi.  This is a $25 computer, the size or a credit card. It’s basically just a minimalist linux platform with a USB port.  The purpose of it is to teach kids to program by stripping the computer down to its punk rock roots.  Look how cute it is:

Image